Новые поступления в БД "Экология: наука и технологии" 2015 год

1. Григорьева, П. Н. Об использовании интегральных гидрохимических и гидробиологических показателей для оценки качества воды и донных отложений поверхностных водных объектов при проведении инженерно-экологических изысканий/ П. Н. Григорьева // Инженерные изыскания. -- 2012. -- № 7. -- С. 68-71. -- Библиогр.: 26 назв.

Краткий обзор методов оценки качества воды и уровня загрязнения донных отложений поверхностных водных объектов России.

2. Шкурычев, Д. С. Автоматизация оценки загрязнения окружающей среды на нефтегазовых месторождениях с использованием ГИС-технологий/ Д. С. Шкурычев, А. Б. Иргалеев // Геоматика. -- 2011. -- № 1. -- С. 32-34.

Картографическое представление интегральных показателей загрязнения по измеренным данным содержания загрязняющих веществ в компонентах окружающей среды.

3. Автоматизированные методы оценки состояния окружающей среды по данным мульти- и гиперспеюральной космической съемки/ А. В. Марков [и др.] // **Геоматика. -- 2012. -- № 4. -- С. 102-106.** -- Библиогр.: 4 назв.

Методы решения тематических задач, связанных с выявлением и определением количественных и качественных характеристик атмосферного воздуха, водной поверхности, растительного и почвенного покровов.

4. Подлипский, И. И. Аккумулятивная биоиндикация в инженерно-экологических изысканиях/ И. И. Подлипский // Инженерные изыскания. -- 2014. -- № 1. -- С. 54-62. -- Библиогр.: 53 назв.

Положительные и отрицательные стороны комплекса методов биогеохимической съёмки, используемой в рамках инженерно-экологических изысканий. Исторический экскурс в становление развитие биоиндикационных методов исследований. Основные подходы к нормированию техногенной нагрузки на биоту. Примеры использования живых организмов для оценки состояния компонентов окружающей среды крупных площадных техногенных объектов - мест захоронения бытовых отходов в Ленинградской области.

5. Козлов, В. В. Активная минеральная добавка на основе отходов хризотилцементного производства/ В. В. Козлов, К. Н. Попов, А. Г. Межов // **Сухие строительные смеси.** -- **2012.** -- № **3.** -- **C. 14-15.** -- Библиогр.: 3 назв.

Теоретические и экспериментальные основы использования отходов хризотилцементного производства в качестве активной минеральной добавки для материалов на основе цементного вяжущего.

6. Керимов, А. М. Анализ взаимосвязи снежности с лавинообразованием в Приэльбрусье/ А. М. Керимов, А. М. Хутуев // **Известия Кабардино-Балкарского научного центра РАН. -- 2014. -- № 3. -- С. 37-45.** -- Библиогр.: 13 назв.

Определение связи между метеорологическими параметрами и лавинообразованием (1995 - 2010 гг.).

7. Суховеева, О. Э. Анализ влияния агроклиматических факторов на урожайность озимой ржи в Центральном Нечерноземье/ О. Э. Суховеева // Метеорология и гидрология. -- 2014. -- № 11. -- С. 74-82. -- Библиогр.: 21 назв.

Оценка влияния агроклиматических факторов на урожайность озимой ржи в Центральном Нечерноземье при современных условиях ведения хозяйственной деятельности.

8. Клименти, Н. Ю. Анализ загрязнения атмосферного воздуха города Волгограда выбросами предприятий строительной отрасли/ Н. Ю. Клименти, Д. В. Текушин // Атмосфера. Охрана атмосферного воздуха / НИИ Атмосфера. -- СПб., 2013. -- № 4. -- С. 26-30. -- Библиогр.: 5 назв.

Рассматривается влияние предприятий строительной отрасли на загрязнение атмосферного воздуха - виды строительной пыли и её количественные параметры. Рекомендуются природоохранные мероприятия, способные улучшить состояние атмосферы.

9. **Кузьминова**, О. В. Анализ загрязнения среды г. Свирска (Иркутской области) тяжелыми металлами с использованием метода географических информационных систем (ГИС)/ О. В. Кузьминова, Л. М. Димова, Т. М. Янчук // Вопросы естествознания. -- 2014. -- № 2. -- С. 12-18. -- Библиогр.: 11 назв.

Оценка степени загрязнения тяжелыми металлами компонентов природной среды г. Свирска и меры по улучшению экологической ситуации. Составление цифровых карт загрязнения свинцом и кадмием почв г. Свирска (Иркутская обл.) с использованием методов ГИС.

10. Анализ загрязненности хлоридами р. Белой в створах Стерлитамакского района/ Е. А. Кантор [и др.] // **Вода: химия и экология. -- 2014. -- № 6. -- С. 14-20.** -- Библиогр.: 10 назв.

Результаты многолетнего исследования качества воды реки Белой в районе воздействия комплекса предприятий химической и нефтехимической промышленности (г. Стерлитамак, Республика Башкортостан).

11. Анализ канцерогенного риска при воздействии факторов окружающей среды на здоровье населения

крупных городов Оренбургской области/ В. М. Боев [и др.] // **Интеллект. Инновации. Инвестиции. -- 2014. --** № 3. -- С. 100-104. -- Библиогр.: 7 назв.

Оценка риска здоровью населения при комплексном воздействии химических факторов, содержащихся в различных объектах окружающей среды: питьевой воде, продуктах питания, воздухе и почве.

12. Кюль, Е. В. Анализ подверженности природно-техногенных горных геосистем опасным экзогенным процессам (на примере Кабардино-Балкарской Республики)/ Е. В. Кюль, П. Е. Марченко, Д. Р. Джаппуев // **Известия Кабардино-Балкарского научного центра РАН. -- 2014. -- № 3. -- С. 46-52.** -- Библиогр.: 13 назв.

Анализ опасных экзогенных процессов природно-техногенного генезиса в зоне расположения объектов Тырныаузского вольфрамо-молибденового комбината. Характеристика проявления в районе оползней, селей, просадок и их влияние на трансформацию горной геосистемы.

13. Кудрявцев, В. А. Анализ последствий загрязнения окружающей среды промышленными предприятиями Курской области/ В. А. Кудрявцев, М. В. Копылович // **Поколение будущего: Взгляд молодых ученых :** сб. науч. ст. 3-й Междунар. молодеж. науч. конф., 13 - 15 нояб. 2014 г. / Юго-Зап. гос. ун-т [и др.]; отв. ред. А. А. Горохов. -- Курск, 2014. -- **Т. 2. -- С. 231-234.** -- Библиогр.: 6 назв.

Рассматривая вопросы загрязнения окружающей среды Курской области, приводя анализ статистических данных демографической ситуации, авторы обращают пристальное внимание каждого к проблемам экологии области уже сегодня, как к проблемах наследуемым будущим поколением.

14. Миртова, И. А. Анализ последствий природных и техногенных чрезвычайных ситуаций на территории Оренбургской области по материалам дистанционного зондирования/ И. А. Миртова, Ю. А. Прусакова // **Геодезия и аэрофотосъемка (Известия вузов). -- 2014. -- № 4. -- С. 75-80.** -- Библиогр.: 3 назв.

Результаты анализа чрезвычайных ситуаций природного и техногенного характера и их последствий на территории Оренбургской области по материалам дистанционного зондирования. Результаты могут быть использованы как в статистических исследованиях и расчетах (например, для более точного расчета рисков страховыми компаниями), так и в роли базовых данных для подсчета материального ущерба, нанесенного в результате рассмотренных чрезвычайных ситуаций экономике Оренбургской области и Российской Федерации.

- 15. Калманова, В. Б. Анализ распределения свинца в системе почва-растительность г. Биробиджан/ В. Б. Калманова // Фундаментальные исследования. -- 2014. -- № 8, ч. 7 . -- С. 1605-1611. -- Библиогр.: 15 назв. Картографирование экологической ситуации г. Биробиджана с выделением наиболее загрязненных свинцом участков.
- 16. Шашуловская, Е. А. Анализ распределения тяжелых металлов в компонентах биогидроценоза Волгоградского водохранилища/ Е. А. Шашуловская, С. А. Мосияш, С. Г. Филимонова // Антропогенное влияние на водные организмы и экосистемы. Современные методы исследования состояния поверхностных вод в условиях антропогенной нагрузки : материалы V Всерос. конф. по водной экотоксикологии, посвящ. памяти Б. А. Флерова, с приглашением специалистов из стран ближнего зарубежья: материалы шк.-семинара для молодых учёных, аспирантов и студентов, 28 окт. 1 нояб. 2014 г. / Инбиологии внутренних вод им. И. Д. Папанина РАН. -- Ярославль, 2014. -- Т. 1. -- С. 49-51. -- Библиогр.: 6 назв.

Показано распределение тяжёлых металлов в абиотических (вода, донные отложения) и биотических (моллюски, высшая водная растительность и рыбы) компонентах биогидроценоза Волгоградского водохранилища. Максимальные количества исследованных элементов характерны для мягких тканей пресноводного моллюска-фильтратора D. bugensis, что позволяет использовать его в качестве объекта биомониторинга.

17. Мельникова, Д. В. Анализ токсикологического воздействия смазочно-охлаждающих технологических средств промышленных предприятий на организм человека и окружающую среду/ Д. В. Мельникова, Д. А. Волков // **Фундаментальные исследования. -- 2014. -- № 11, ч. 7** . **-- С. 155-159. --** Библиогр.: 9 назв.

Основные пути поступления вредных веществ смазочно-охлаждающих технологических средств (СОТС) в организмы рабочих (профзаболевания). Пути миграции отработанных нефтепродуктов в почве. Опасные свойства СОТС при испарении и попадании их в воду.

18. Ахметшина, Э. А. Анализ фосфолипидных жирных кислот микроорганизмов как биомаркеров окружающей среды/ Э. А. Ахметшина, А. С. Сироткин // **Вестник Казанского технологического университета.** -- **2014.** -- **T. 17, № 19.** -- **C. 233-236.** -- Библиогр.: 12 назв.

Использование характеристик фосфолипидов, которые характерны для стресса окружающей среды, как индикаторов экологического мониторинга, природных биомаркеров для оценки состояния окружающей среды.

19. Бассейновый подход к оценке антропогенных нагрузок на окружающую среду в районе деятельности нефтедобывающей компании/ О. П. Ермолаев [и др.] // **Нефтяное хозяйство. -- 2014. -- № 12. -- С. 156-160.** -- Библиогр.: 11 назв.

Негативное воздействие на окружающую среду деятельности предприятий нефтегазодобывающей отрасли, часто приводящее к изменению природных систем, нарушению механизмов их функционирования и устойчивости. Система анализа речных бассейнов, включающая определение порядков речной сети, ее структуры, роли в ходе развития русловой и бассейновой эрозии. Пространственный анализ антропогенного

воздействия как на отдельные компоненты, так и на окружающую среду в целом в регионе интенсивной добычи нефти, проведенный на основе методики бассейнового подхода.

20. Туркина, И. А. Бетоны на отходах производства/ И. А. Туркина // Технологии бетонов. -- 2013. -- № 8. -- C. 42-44. -- Библиогр.: 6 назв.

Данные о накоплении промышленных отходов в России на полигонах. Необходимость промышленной переработки отходов. Использование различных отходов для бетонов.

21. Биогазовые установки для переработки отходов свиноводства в Орловской области/ А. В. Виноградов [и др.] // Энергия: экономика, техника, экология. -- 2014. -- № 11. -- С. 16-23. -- Библиогр.: 11 назв. Внедрение новых технологий переработки отходов.

Лобус, Н. В. Биогеохимия ртути в водных экосистемах разных климатических зон/ Н. В. Лобус, В. Т. Комов // **22. Лобус, Н. В.** Биогеохимия ртути в водных экосистемах разных климатических зон/ Н. В. Лобус, В. Т. Комов // **Антропогенное влияние на водные организмы и экосистемы.** Современные методы исследования состояния поверхностных вод в условиях антропогенной нагрузки: материалы V Всерос. конф. по водной экотоксикологии, посвящ. памяти Б. А. Флерова, с приглашением специалистов из стран ближнего зарубежья: материалы шк.-семинара для молодых учёных, аспирантов и студентов, 28 окт. - 1 нояб. 2014 г. / Ин- биологии внутренних вод им. И. Д. Папанина РАН. -- Ярославль, 2014. -- **Т. 1. -- С. 19-23.** -- Библиогр.: 7 назв.

Рассматриваются основные закономерности биогеохимического цикла ртути в разных климатических зонах. Приводятся данные по особенностям биогенной миграции металла в водоёмах северных, умеренных и тропических широт.

23. Бузмаков, С. А. Биоиндикация техногенной трансформации экосистем на территории нефтяных месторождений по состоянию микробного комплекса/ С. А. Бузмаков // **Географический вестник. -- 2014. -- № 2. -- С. 64-78. --** Библиогр.: 16 назв.

Техногенное загрязнение атмосферы, поступление аварийных сбросов водонефтяной эмульсии и загрязнение водоемов и пойменных почв солеными водами при эксплуатации нефтяного месторождения. Биоиндикация техногенных изменений экосистемы по состоянию основных групп микроорганизмов.

24. Биоконверсия растительных отходов ксилотрофными макромицетами выделенных из экологически разных территорий Азербайджана/ В. Я. Гасанова [и др.] // Акад. журн. Зап. Сибири : материалы IV науч.-практ. конф. с междунар. участием, 27 - 28 авг. 2014 г., Рас-аль-Хайма (ОАЭ) / Тюм. гос. нефтегазовый ун-т, Тюм. гос. мед. акад.. -- Тюмень, 2014. -- Т. 10, № 4(53): Естественные науки: достижения нового века. -- С. 45-46. -- Библиогр.: 16 назв.

Проведённые исследования убедительно показали, что ксилотрофные базидиальные грибы обладают всеми необходимыми свойствами для рациональной утилизации растительных отходов, на основе которых была разработана малоотходная комплексная технология, предусматривающая использование растительных отходов и ресурсов по принципу «мало- или безотходной технологии на конкретном этапе».

- 25. Биологическая оценка токсичности городских почв в почвенно-экологическом мониторинге/ Т. В. Бардина [и др.] // Экология урбанизированных территорий. -- 2014. -- № 2. -- С. 87-91. -- Библиогр.: 9 назв. Изучение динамики экотоксикологического состояния верхних слоев почв различных регионов Санкт-Петербурга с применением традиционных и новых методов биотестирования.
- 26. Биологическая очистка сточных вод от ионов хрома (VI) с применением биологически активных веществ/ А. И. Хабибрахманова [и др.] // Вестник Казанского технологического университета. -- 2014. -- Т. 17, № 19. -- С. 223-225. -- Библиогр.: 7 назв.

Исследование влияния гуминового препарата и мелафена на процесс очистки модельной сточной воды, содержащей ионы тяжёлых металлов на примере шестивалентного иона хрома.

27. Григорьев, Ю. С. Биотестирование в системе экологического мониторинга качества вод: решаемые задачи и условия, обеспечивающие получение воспроизводимых результатов / Ю. С. Григорьев, Т. Л. Шашкова, Е. С. Стравинскене // Антропогенное влияние на водные организмы и экосистемы. Современные методы исследования состояния поверхностных вод в условиях антропогенной нагрузки : материалы V Всерос. конф. по водной экотоксикологии, посвящ. памяти Б. А. Флерова, с приглашением специалистов из стран ближнего зарубежья: материалы шк.-семинара для молодых учёных, аспирантов и студентов, 28 окт. - 1 нояб. 2014 г. / Ин- биологии внутренних вод им. И. Д. Папанина РАН. -- Ярославль, 2014. -- Т. 1. -- С. 130-132.

Биотестирование токсичности воды позволяет оперативно сигнализировать об опасности загрязнителей, попадающих в окружающую среду, что даёт возможность предупредить возникновение в ней неблагополучных экологических ситуаций. Рассмотрены требования к выполнению этого вида биологического анализа.

- 28. Чернова, Н. И. Биотопливо из водорослей: технологии, продуктивность, перспективы/ Н. И. Чернова, С. В. Киселёва // Энергия: экономика, техника, экология. -- 2014. -- № 11. -- С. 24-32. -- Библиогр.: 15 назв. Микроводоросли как источник сырья для биоэнергетики. Технологии преобразования водорослей в энергоносители. Проблемы получения биомассы микроводорослей.
- 29. Науменко, Ю. В. Видовой состав и эколого-географическая характеристика водорослей болот

природного парка «Сибирские Увалы»/ Ю. В. Науменко, О. Ю. Птухина // Вестник Нижневартовского государственного гуманитарного университета . -- 2012. -- № 1. -- С. 11-14. -- Библиогр.: 5 назв.

Результаты изучения таксономической структуры и эколого-географической характеристики альгофлоры болот природного парка «Сибирские Увалы».

30. Влияние биоаккумуляции радионуклидов на уровни их экологического воздействия на черноморские гидробионты/ Н. Н. Терещенко [и др.] // Антропогенное влияние на водные организмы и экосистемы. Современные методы исследования состояния поверхностных вод в условиях антропогенной нагрузки : материалы V Всерос. конф. по водной экотоксикологии, посвящ. памяти Б. А. Флерова, с приглашением специалистов из стран ближнего зарубежья: материалы шк.-семинара для молодых учёных, аспирантов и студентов, 28 окт. - 1 нояб. 2014 г. / Ин- биологии внутренних вод им. И. Д. Папанина РАН. -- Ярославль, 2014. -- Т. 1. -- С. 44-48. -- Библиогр.: 10 назв.

На основе изучения накопления постчернобыльских радионуклидов морскими организмами оценены уровни ожидаемого экологического воздействия на черноморские гидробионты ионизирующего излучения от инкорпорированных радиоизотопов [[p]]239+240[[/p]]Pu и [[p]]241[[/p]]Am в широком диапазоне их концентраций в морской воде.

31. Влияние добавок низкокальциевой золы-уноса ТЭС на характеристики дорожного битумного вяжущего/ М. С. Лебедев [и др.] // Строительные материалы. -- 2014. -- № 11. -- С. 8-11. -- Библиогр.: 11 назв

Опыт применения золы-уноса тепловых электростанций при производстве строительных материалов, в частности вяжущих веществ. Возможность модифицирования битумного вяжущего тонкодисперсной золой-уносом. Проведение исследований, направленных на изучение влияния фазовых и размерных характеристик дисперсного сырья на свойства битумов и асфальтобетонов.

32. Филиппова, Е. В. Влияние естественных и антропогенных факторов на гидрологический режим реки Ингода/ Е. В. Филиппова // Вестн. Забайк. гос. ун-та / Забайк. гос. ун-т. -- Чита, 2014. -- № 06 (108). -- С. 21-27. -- Библиогр.: 10 назв.

С учетом данных, характеризующих ежегодные потери лесного фонда в результате пожаров, проведён анализ изменения заселенности водосбора реки Ингода и дана оценка влияния на неё некоторых метеорологических факторов. Подробно изложены результаты мониторинга, дан прогноз залесенности за отсутствующий период наблюдений. Отмечено, что на исследуемых водосборах установлено снижение залесенности, увеличение температуры воздуха и снижение меженного расхода в реке Ингода. Отмечена актуальность проблемы снижения залесенности по берегам малых рек и их интенсивное обмеление.

33. Влияние крупных городов на качество речных вод (на примере р. Обь в районе г. Барнаула)/ Е. Ю. Дрюпина [и др.] // Вода: химия и экология. -- 2014. -- № 7. -- С. 3-9. -- Библиогр.: 10 назв.

Современное состояние поверхностных вод (р. Обь) в районе г. Барнаула. Основные источники поступления загрязняющих веществ в реку. Оценка влияния сточных вод г. Барнаула на качество вод р. Оби.

34. Старокожева, Г. И. Влияние многоукладности хозяйства на экологическое состояние регионов Юга России/ Г. И. Старокожева // **Региональная экономика. Юг России. -- 2014. -- № 3. -- С. 34-42.** -- Библиогр.: 14 назв.

Исследование неоднородности экономического развития субъектов Южного федерального округа и влияния этого процесса на основные показатели загрязнения, определяющие качество окружающей природной среды. Современное состояние атмосферного воздуха, сброса загрязненных сточных вод хозяйствующими субъектами, образование отходов производства и потребления. Анализ причин и источников их образования, обоснование необходимости превращения федеральных округов в территориальные центры экономического регулирования с целью устойчивого развития регионов.

35. Константинова, Т. Г. Влияние наличия техногенных отложений на повреждение зданий и сооружений при сильных землетрясениях на территории города Петропавловска-Камчатского/ Т. Г. Константинова // **Инженерные изыскания.** -- **2014.** -- **№ 2.** -- **C. 54-57.** -- Библиогр.: 15 назв.

Изучение особенностей изысканий на территориях с наличием в геологическом разрезе техногенных грунтов, а также при намечающемся заложении фундаментов на вновь отсыпанных грунтах. Возможность использования опыта данных исследований в районах с проявлениями вулканической и сейсмической активности.

36. Ермолаева, Н. И. Влияние повышенной антропогенной нагрузки на структурные изменения сообществ зоопланктона Новосибирского водохранилища/ Н. И. Ермолаева, С. Я. Двуреченская // Антропогенное влияние на водные организмы и экосистемы. Современные методы исследования состояния поверхностных вод в условиях антропогенной нагрузки: материалы V Всерос. конф. по водной экотоксикологии, посвящ. памяти Б. А. Флерова, с приглашением специалистов из стран ближнего зарубежья: материалы шк.-семинара для молодых учёных, аспирантов и студентов, 28 окт. - 1 нояб. 2014 г. / Инбиологии внутренних вод им. И. Д. Папанина РАН. -- Ярославль, 2014. -- Т. 1. -- С. 66-70. -- Библиогр.: 5 назв.

В условиях повышенной антропогенной нагрузки исследовано влияние химического состава воды Новосибирского водохранилища на структурные характеристики зоопланктона, являющиеся индикаторами загрязнения экосистемы.

37. Королев, В. А. Влияние разработки месторождений суглинков на эколого-геологические условия

прилегающих территорий/ В. А. Королев, С. Г. Медведева // **Инженерные изыскания.** -- **2013.** -- **№ 3.** -- **С. 12-26.** -- Библиогр.: 14 назв.

Особенности влияния карьерной разработки месторождений суглинков в Калужской области на эколого-геологические условия прилегающих территорий. Техногенное химическое загрязнение окружающей среды этих территорий тяжелыми металлами и полициклическими ароматическими углеводородами. Рекомендации по устранению указанных негативных явлений и улучшению экологической обстановки.

38. Сухоруков, Б. Л. Влияние токсичности соединений кадмия на спектры восходящего излучения водных экосистем мезокосмов/ Б. Л. Сухоруков // Антропогенное влияние на водные организмы и экосистемы. Современные методы исследования состояния поверхностных вод в условиях антропогенной нагрузки: материалы V Всерос. конф. по водной экотоксикологии, посвящ. памяти Б. А. Флерова, с приглашением специалистов из стран ближнего зарубежья: материалы шк.-семинара для молодых учёных, аспирантов и студентов, 28 окт. - 1 нояб. 2014 г. / Ин- биологии внутренних вод им. И. Д. Папанина РАН. -- Ярославль, 2014. -- Т. 1. -- С. 181-184. -- Библиогр.: 2 назв.

Приведены результаты одного из направлений оперативного мониторинга водных экосистем, использующего дистанционно полученную спектрометрическую информацию видимого спектра со спектральным разрешением менее 2 нм. Объект исследования - модельные экосистемы поверхностных вод в низовье р. Дон.

- 39. Каманина, И. 3. Воздействие автотранспорта на окружающую среду г. Дубны/ И. 3. Каманина, О. А. Савватеева // Фундаментальные исследования. -- 2014. -- № 8, ч. 7 . -- С. 1612-1616. -- Библиогр.: 7 назв. Оценка интенсивности движения транспортного потока по основным дорогам города за период 1998-2014 гг., накопления тяжелых металлов в придорожной растительности, а также возможных последствий воздействия на организм человека.
- **40. Кирсанов, В. В.** Воздействие акустических колебаний (слышимого шума, инфразвука) на окружающую природную среду/ В. В. Кирсанов, И. Г. Григорьева // Вестник Казанского технологического университета. 2014. -- Т. 17, № 17. -- С. 126-129. -- Библиогр.: 4 назв.

Виброакустический дискомфорт антропогенного происхождения для человека и окружающей природной среды. Определение физиологических процессов и функциональных изменений (шумовая болезнь) в организме при превышении уровней акустических колебаний.

41. Шестеркин, В. П. Воздействие гидроэнергетического строительства на содержание и сток растворенных веществ в воде реки Бурея/ В. П. Шестеркин, С. Е. Сиротский, Н. М. Шестеркина // **Водное хозяйство России. -- 2014. -- № 4. -- С. 72-83.** -- Библиогр.: 13 назв.

Глубокая трансформация химического состава речных вод вследствие влияния гидроэнергетического строительства. Оценка степени загрязненности вод в маловодный (2008) и многоводные (2012 - 2013) годы.

42. Воздействие промышленных загрязнений атмосферного воздуха на организм работников, выполняющих трудовые операции на открытом воздухе в условиях холода/ В. П. Чащин [и др.] // **Медицина труда и промышленная экология. -- 2014. -- № 9. -- С. 20-26.** -- Библиогр.: 16 назв.

Определение основных закономерностей вредного влияния охлаждающих метеорологических факторов и загрязнений воздуха вредными веществами и пылью на состояние здоровья людей, работающих на металлургических предприятиях по производству цветных металлов в районах Крайнего Севера.

- 43. Петров, Т. И. Воздействие ТЭС на окружающую среду/ Т. И. Петров, В. В. Ядутов // Поколение будущего: Взгляд молодых ученых: сб. науч. ст. 3-й Междунар. молодеж. науч. конф., 13 15 нояб. 2014 г. / Юго-Зап. гос. ун-т [и др.]; отв. ред. А. А. Горохов. -- Курск, 2014. -- Т. 2. -- С. 247-249. -- Библиогр.: 3 назв. Неблагоприятное воздействие ТЭС на окружающую среду, основные методы минимизации этого воздействия.
- **44.** Васильева, Л. В. Возможности использования асбестоцементных отходов для производства сухих строительных смесей/ Л. В. Васильева, А. Г. Губская // Сухие строительные смеси. -- 2012. -- № 2. -- С. 15-16.

Пути утилизации асбестосодержащих отходов, обеспечивающие экологическую безопасность получаемой продукции - сухих строительных смесей.

45. Алексеенко, Н. А. Возможности картографирования антропогенного влияния на особо охраняемые природные территории/ Н. А. Алексеенко, А. А. Медведев // **Геодезия и аэрофотосъемка (Известия вузов). -- 2014. -- № 4. -- С. 52-58.** -- Библиогр.: 7 назв.

Анализ состояния картографирования антропогенного влияния по опубликованным российским источникам. Возможности распространения опыта картографирования антропогенного воздействия на особо охраняемые природные территории, которые обладают рядом особенностей.

46. Носов, М. А. Волны цунами сейсмического происхождения: современное состояние проблемы / М. А. Носов // **Известия Российской академии наук. Физика атмосферы и океана. -- 2014. -- Т. 50, № 5. -- С. 540-551.** -- Библиогр.: 142 назв.

Современные представления о волнах цунами сейсмического происхождения. Принципы оперативного прогноза и способы регистрации цунами. Обзор современного представления проблемы.

47. Волоконно-оптические датчики для контроля параметров состояния объектов и окружающей среды в задачах мониторинга/ А. И. Вялышев [и др.] // Природообустройство. -- 2014. -- № 3. -- С. 32-37. -- Библиогр.: 3 назв.

Использование преимуществ волоконно-оптических сенсорных элементов при создании непрерывного комплексного мониторинга природно-технических систем для предупреждения чрезвычайных ситуаций природно-техногенного характера.

48. Агагусейнова, М. М. Вопросы выбора тестового участка электрокинетической очистки урбанизированных территорий от тяжелых металлов/ М. М. Агагусейнова, С. О. Мамедова // **Экология урбанизированных территорий. -- 2014. -- № 2. -- С. 60-63.** -- Библиогр.: 5 назв.

Краткий обзор наиболее характерных исследований последних лет по электрокинетической очистке почв урбанизированных территорий от тяжелых металлов.

49. Устинов, Б. С. Вторичное применение переработанных кровельных битумных отходов в строительных смесях для изолирующих слоев в реконструируемых совмещенных крышах/ Б. С. Устинов, Д. Б. Устинов // **Кровельные и изоляционные материалы.** -- **2013.** -- № **4.** -- **C. 38-42.** -- Библиогр.: 8 назв.

Анализ возможности и целесообразности применения битумоцементной дисперсной смеси на основе измельченных кровельных битумных отходов.

50. Новиков, А. А. Выбор концепции космического мониторинга в сельском хозяйстве/ А. А. Новиков, С. И. Михайлов // **Климат и природа. -- 2014. -- № 4. -- С. 14-26.**

Основные цели и задачи использования космической съемки для сельского хозяйства России. Описание подходов к планированию и проведению космического мониторинга сельскохозяйственной деятельности. Использование данных дистанционного зондирования земли в сельскохозяйственных информационных системах. Требования к системе космического мониторинга сельского хозяйства.

51. Петров, И. М. Выбросы мышьяка металлургическими заводами и их влияние на состояние окружающей среды и здоровье населения/ И. М. Петров, И. Ф. Вольфсон, А. И. Петрова // Экол. вестн. России. -- М., 2014. -- № 12. -- С. 44-49. -- Библиогр.: 6 назв.

Основное внимание уделено газообразным выбросам металлургических предприятий при обжиге и плавке сырья цветных и благородных металлов. Анализ данных позволяет сделать вывод о том, что в Российской Федерации при наличии существенных выбросов мышьяка в окружающую среду существует недооценка опасности его воздействия на здоровье людей.

52. Фоминых, А. С. Высшая водная растительность бассейна реки Белой в районе города Стерлитамака/ А. С. Фоминых // Водное хозяйство России. -- 2014. -- № 4. -- С. 17-30. -- Библиогр.: 14 назв.

Изучение состава водной макрофитной растительности бассейна р. Белой. Анализ влияния уровня минерализации и промышленных стоков крупного города на высшие водные растения.

53. Насибуллин, Р. Р. Газовоздушная завеса как средство защиты при ограничении распространения токсичных облаков/ Р. Р. Насибуллин, А. Д. Галеев, С. И. Поникаров // **Вестник Казанского технологического университета. -- 2014. -- Т. 17, № 19. -- С. 215-218. --** Библиогр.: 8 назв.

Анализ и обзор работ, посвящённых исследованию воздушных завес, применяемых в качестве защитных средств при ограничении распространения опасных веществ.

54. Геодинамические факторы техногенной оценки воздействия на ландшафт при разработке нефтегазовых месторождений/ А. И. Никонов [и др.] // Нефтепромысловое дело. -- 2014. -- № 12. -- С. 51-56. -- Библиогр.: 15 назв.

Вопросы оценки изменения окружающей среды от воздействия на неё нефтегазового комплекса на основе использования принципа ландшафтного подхода, а также нового фактора изменения рельефа земной поверхности в областях нефтегазодобычи, связанного с современным геодинамическим состоянием недр.

55. Куролап, С. А. Геоинформационно-аналитический комплекс для обеспечения медико-экологического мониторинга г. Воронежа/ С. А. Куролап, П. М. Виноградов, О. В. Клепиков // **Геоматика. -- 2014. -- № 3. -- С. 43-50.** -- Библиогр.: 3 назв.

Создание специализированного геоинформационно-аналитического комплекса для обеспечения задач медико-экологического мониторинга и оценки риска для здоровья населения при воздействии химических веществ, загрязняющих городскую среду.

56. Геоинформационное сопровождение зонирования геосистем прибрежных районов Российской Арктики по степени уязвимости/ И. В. Федорова [и др.] // Проблемы Арктики и Антарктики : сб. науч. ст. / Гос. науч. центр Рос. Федерации Аркт. и Антаркт. науч.-исслед. ин-т. -- СПб., 2014. -- № 4(102). -- С. 50-60. -- Библиогр.: с. 59-60.

В связи с возрастающим вниманием к исследованию и использованию арктической зоны для развития хозяйственного комплекса России немаловажным является выделение зон уязвимости геосистем к антропогенному воздействию для прибрежных районов Российской Арктики и их разноаспектная визуализация при помощи геоинформационных технологий. Описываются основные факторы, использованные для выделения зон уязвимости.

57. Геоморфологические ландшафты как основа геоэкологического районирования/ И. С. Копылов [и др.] // **Фундаментальные исследования. -- 2014. -- № 11, ч. 10 . -- С. 2196-2201**. -- Библиогр.: 13 назв.

Важная роль ландшафтного подхода в методике геоэкологического картографирования и районирования. Разработка классификации генетических типов ландшафта с геолого-геоморфологической характеристикой и оценкой геодинамической и геохимической устойчивости. Характеристика природных и техногенных ландшафтов Среднего Урала и Приуралья. Составление геолого-экологической карты Среднего Урала на ландшафтно-геоморфологической основе.

58. Тихонов, В. П. Геосистемная оценка экологических условий трассы линейного объекта при инженерноэкологических изысканиях/ В. П. Тихонов, Т. И. Караваева // Инженерные изыскания. -- 2013. -- № 6. -- С. 62-66. -- Библиогр.: 10 назв.

Возможность оценки природных условий трассы линейного объекта по биогеоценозам. Экологическое обоснование биогеоценоза как основного объекта инженерно-экологических изысканий. Методические основы определения границ зон воздействия линейных объектов на компоненты природной среды.

59. Караваева, Т. И. Геосистемное обоснование выбора границ территории проведения инженерноэкологических изысканий/ Т. И. Караваева, В. П. Тихонов // **Инженерные изыскания. -- 2012. -- № 11. -- С. 70-74.** -- Библиогр.: 7 назв.

Выполнение инженерно-экологических изысканий для экологического обоснования планируемой деятельности с целью предотвращения, снижения или ликвидации неблагоприятных последствий для окружающей среды. Геосистемная основа выбора территории инженерно-экологических изысканий.

60. Бычихин, А. С. Геотехнический мониторинг транспортных природно-технических систем в условиях оползневой опасности/ А. С. Бычихин, В. Ю. Тимошенко, Е. В. Безуглова // Инженерные изыскания. -- 2013. -- № 10-11. -- С. 78-81. -- Библиогр.: 5 назв.

Обсуждение понятия «геотехнический мониторинг», в том числе в отношении транспортных природнотехнических систем. Основные этапы и практика применения геотехнического мониторинга на примере строительства новой центральной автомагистрали города Сочи «Дублер Курортного проспекта» в рамках подготовки к XXII зимним Олимпийским играм. Значение современных решений в области геотехнического мониторинга.

61. Корнеев, О. Ю. Геоэкологические аспекты дреджинга в Финском заливе/ О. Ю. Корнеев, А. Е. Рыбалко, Н. К. Федорова // **Ученые записки / Рос. гос. гидрометеорол. ун-т. -- 2014. -- № 35. -- С. 119-123.** -- Библиогр.: 7 назв.

Основные последствия дноуглубительных работ (дреджинга) для окружающей природной среды на примере российской части Финского залива. Изменения гео- и гидродинамических характеристик в водной толще и донных осадках.

62. Евграфова, И. М. Геоэкологическое обоснование использования мобильных энергетических установок/ И. М. Евграфова, А. А. Лаврусевич // **Строительство (Известия вузов). -- 2014. -- № 5. -- С. 72-76.** -- Библиогр.: 5 назв.

Определение воздействия на окружающую среду от мобильных газотурбинных электростанций в процессе строительства, эксплуатации и демонтажа объекта (на примере подстанции "Псоу" в Адлерском районе г. Сочи).

63. Кашапов, **Р. Ш**. Геоэкологическое состояние территории Республики Башкортостан/ Р. Ш. Кашапов // **Вестник Нижневартовского государственного гуманитарного университета . -- 2011. -- № 2. -- С. 30-34.** -- Библиогр.: 7 назв.

Характеристика геоэкологического состояния Башкортостана на уровне геосистем. Наиболее существенные показатели степени влияния хозяйственной деятельности на природную среду.

64. Мязина, **Н. Г.** Гидрогеохимические свойства Ергенинского аллювиального водоносного горизонта (Цимлянский артезианский бассейн)/ Н. Г. Мязина, П. А. Пономарева // **Вестник Оренбургского государственного университета. -- 2014. -- № 6. -- С. 133-138. --** Библиогр.: 7 назв.

Изучение качественного состава подземных вод горизонта, закономерностей формирования и размещения. Возможности комплексного использования гидроминеральных ресурсов.

65. Филиппов, Д. А. Гидрохимическая характеристика внутриболотных водоёмов (на примере Шиченгского верхового болота, Вологодская область)/ Д. А. Филиппов // Вода: химия и экология. -- 2014. -- № 7. -- С. 10-17. -- Библиогр.: 30 назв.

Изучение химического состава болотных вод четырех разнотипных внутриболотных водоёмов.

66. Дурнев, В. Ф. Гидрохимический режим реки Нижняя Тунгуска как фактор экологического риска/ В. Ф. Дурнев, И. В. Космаков // **Инженерные изыскания.** -- **2013.** -- **№ 13.** -- **С. 68-72.** -- Библиогр.: 10 назв.

Результаты совместного анализа данных по средним месячным расходам воды и относительному содержанию основных ионов в реке Нижняя Тунгуска. Возможность негативных изменений в гидрохимическом режиме реки при антропогенном воздействии.

67. Царегородцева, А. Г. Гидроэкологический мониторинг малых рек Павлодарского Прииртышья/ А. Г.

Царегородцева // **Экосистемы малых рек: биоразнообразие, экология, охрана**: материалы лекций 2-й Всерос. шк.-конф., 18 - 22 нояб. 2014 г. / Ин-т биологии внутренних вод им. И. Д. Папанина. -- Ярославль, 2014. -- **Т. 1. -- С. 103-111.** -- Библиогр.: 6 назв.

Экосистемы малых рек характеризуются повышенной чувствительностью к антропогенному воздействию. Превышение пределов экологически допустимого антропогенного воздействия ведёт к снижению и утрате природно-антропогенных, а в дальнейшем и природно-естественных функций малой реки. Приводится краткая характеристика и материалы исследования природных комплексов малых рек на примере Шидертинско-Олентинской природной зоны, имеющей большое значение для сельскохозяйственного обеспечения региона.

68. Розенталь, О. М. Гидроэкологический мониторинг: статистический водный контроль/ О. М. Розенталь // **Инженерная экология. -- 2014. -- № 5. -- С. 44-60.** -- Библиогр.: 22 назв.

Контроль качества природных и сточных вод. Недостатки современной системы водно-экологического контроля.

69. Кочарян, А. Г. Гидроэкология: водохранилища - баланс противоречий/ А. Г. Кочарян, И. П. Лебедева // **Инженерная экология. -- 2014. -- № 5. -- С. 13-31.** -- Библиогр.: 23 назв.

Сведения о числе и объемах существующих в мире крупных водохранилищ. Анализ позитивных и негативных последствий создания и эксплуатации водохранилищ. Роль водохранилищ в трансформации химического состава речных вод и их влияние на экологию прилегающих территорий.

70. Волосастов, С. Э. Гидроэкология: оценка укрупненного экологического ущерба, наносимого Балтийскому морю сбросами загрязняющих веществ/ С. Э. Волосастов, В. И. Семенцов, М. М. Степанов // **Инженерная экология.** -- **2014.** -- № 5. -- С. **32-43.** -- Библиогр.: 4 назв.

Поступление загрязняющих веществ со сточными водами предприятий в поверхностные воды. Определение основных загрязняющих веществ и данные о сбросах азота, фосфора, ртути, меди и цинка в экосистему Балтийского моря.

71. Козубенко, И. С. Государственная информационная система мониторинга земель сельскохозяйственного назначения Краснодарского Края/ И. С. Козубенко, М. А. Болсуновский // Геоматика. -- 2011. -- № 2. -- С. 56-61.

Государственный мониторинг сельскохозяйственных земель в целях предотвращения выбытия земель сельскохозяйственного назначения, сохранения и вовлечения их в сельскохозяйственное производство.

72. Бакаева, Н. В. Декомпозиция факторов обеспечения экологической безопасности объектов транспортного строительства/ Н. В. Бакаева, Д. В. Матюшин // Биосферная совместимость: человек, регион, технологии. -- 2014. -- № 1. -- С. 42-53. -- Библиогр.: 10 назв.

Анализ и систематизация многообразия факторов, влияющих на формирование неблагоприятной экологической обстановки и определяющих экологическую безопасность объектов транспортного строительства.

73. Гуляева, И. С. Детоксикация осадков городских сточных вод с использованием гуминсодержащих реагентов/ И. С. Гуляева, М. С. Дьяков // Вода: химия и экология. -- 2014. -- № 6. -- С. 106-111. -- Библиогр.: 10 назв.

Разработка методов обезвреживания и утилизации осадков сточных вод с получением экологически безопасных товарных продуктов.

74. Улатов, А. В. Динамика загрязнения лососевых рек в зоне воздействия Агинского горно-обогатительного комбината/ А. В. Улатов // Антропогенное влияние на водные организмы и экосистемы. Современные методы исследования состояния поверхностных вод в условиях антропогенной нагрузки : материалы V Всерос. конф. по водной экотоксикологии, посвящ. памяти Б. А. Флерова, с приглашением специалистов из стран ближнего зарубежья: материалы шк.-семинара для молодых учёных, аспирантов и студентов, 28 окт. - 1 нояб. 2014 г. / Ин- биологии внутренних вод им. И. Д. Папанина РАН. -- Ярославль, 2014. -- Т. 1. -- С. 187-191. -- Библиогр.: 8 назв.

Показана динамика уровней загрязнения лососевых водотоков в бассейне р. Ича в зоне техногенного воздействия Агинского горно-обогатительного комбината (АГОК). С учётом фоновых (ретроспективных) характеристик природных вод в районе месторождения показаны современные масштабы воздействия на водные объекты. По критериям Росгидромета концентрации ряда загрязняющих веществ (3B) в воде водотоков-приёмников сточных вод достигают уровней высокого загрязнения (B3) и экстремально высокого загрязнения (ЭВ3). По критериям МПР РФ текущая экологическая обстановка характеризуется как напряжённая, близкая к критической.

75. Спиридонов, М. А. Динамика седиментационных процессов в Невской губе (Финский залив) под воздействием техногенных факторов/ М. А. Спиридонов // Ученые записки / Рос. гос. гидрометеорол. ун-т. - 2014. -- № 35. -- С. 102-118. -- Библиогр.: 32 назв.

Оценка воздействия техногенеза на природную среду восточной части Финского залива и выработка эффективных мер по рациональному природопользованию

76. Абросимов, А. В. Дистанционное геопространственное информационное обеспечение

недропользования в условиях Крайнего Севера: предотвращение рисков, связанных с термоэрозией/ А. В. Абросимов, О. С. Сизов // **Геоматика.** -- 2013. -- № 3. -- С. 50-58.

Создание системы качественной геопространственной информации с применением современных космических снимков. Разработка методики дистанционной оценки термоэрозионной опасности как вероятности активизации экзогенных процессов в зоне многолетней мерзлоты под влиянием климатических изменений.

77. Дистанционный мониторинг обстановки окружающей среды вокруг атомных электростанций с космических аппаратов/ К. А. Боярчук [и др.] // Геоматика. -- 2013. -- № 1. -- С. 63-67. -- Библиогр.: 5 назв.

Разработка эффективных методов дистанционного обнаружения и контроля радиоактивного загрязнения окружающей среды и геофизической обстановки района. Дистанционное зондирование радиоактивных загрязнений.

78. Крылов, А. М. Дистанционный мониторинг состояния лесов по данным космической съемки/ А. М. Крылов, Н. А. Владимирова // **Геоматика. -- 2011. -- № 3. -- С. 53-57.** -- Библиогр.: 7 назв.

Некоторые особенности и практический опыт дешифрирования при обнаружении поврежденных участков леса для оценки площади повреждения.

79. Ложкина, О. В. Европейское программное обеспечение COPERT для практики расчетов выбросов вредных веществ автотранспортными средствами в РФ/ О. В. Ложкина, В. Н. Ложкин, Н. М. Головина // **Атмосфера. Охрана атмосферного воздуха / НИИ Атмосфера. -- СПб., 2013. -- № 4. -- С. 11-20.** -- Библиогр.: 10 назв.

Описаны результаты апробации в Российской Федерации европейского программного обеспечения COPERT IV, предназначенного для практики расчётов выбросов загрязняющих веществ и парниковых газов от автотранспортных средств, а также проведён сравнительный анализ полученных расчётных данных с данными национальной инвентаризации загрязнителей атмосферного воздуха.

80. Зубков, С. А. Единое геоинформационное пространство Москвы/ С. А. Зубков // Геоматика. -- 2013. -- № 3. -- С. 42-44.

Структура интегрированной автоматизированной информационной системы "Единое геоинформационное пространство города Москвы".

81. Николаева, В. М. Загрязнение Арктики выбросами черного углерода: основные аспекты/ В. М. Николаева, П. М. Шемяков // Атмосфера. Охрана атмосферного воздуха / НИИ Атмосфера. -- СПб., 2013. -- № 4. -- С. 20-26. -- Библиогр.: 17 назв.

Рассмотрены основные аспекты загрязнения Арктики выбросами чёрного углерода, даны определение понятия «чёрный углерод», сформулированы его основные отличия от сажи, перечислены основные источники выбросов чёрного углерода и особенности его негативного воздействия на окружающую среду, здоровье населения, климат.

82. Ходжаева, Г. К. Загрязнение земель нефтью и нефтепродуктами на территории месторождении Нижневартовского района/ Г. К. Ходжаева // Вестник Нижневартовского государственного гуманитарного университета. -- 2011. -- № 2. -- С. 35-38. -- Библиогр.: 3 назв.

Особенности загрязнения земель разливами нефти на территории местороэюдений Нижневартовского района до и после рекультивации. Зонирование территорий с учетом загрязненных площадей и объемов разлитой нефти.

83. Веницианов, Е. В. Загрязнение и самоочищение малых рек: процессы, мониторинг, охрана/ Е. В. Веницианов, Г. В. Аджиенко, Н. М. Щеголькова // Экосистемы малых рек: биоразнообразие, экология, охрана: материалы лекций 2-й Всерос. шк.-конф., 18 - 22 нояб. 2014 г. / Ин-т биологии внутренних вод им. И. Д. Папанина. -- Ярославль, 2014. -- Т. 1. -- С. 23-41. -- Библиогр.: с. 40-41.

Представлены подходы к изучению состояния малых рек, а также к проблеме регулирования при их использовании, изложенные в следующих разделах: 1. Общие подходы к изучению экологического статуса малых рек; 2. Самоочищение и проблемы «фоновых состояний»; 3. Проблема диффузного стока; 4. Малые реки в городе; 5. Малые водные объекты - коллекторы сточных вод; 6. Оценка самоочищения малых водных объектов при поступлении коммунально-бытовых сточных вод.

84. Баринов, А. Ю. Защита от селевых потоков «гибкими» барьерами: опыт Сочи/ А. Ю. Баринов // **ГеоРиск. -- 2013. -- № 4. -- С. 56-58**. -- Библиогр.: 6 назв.

Проблемы инженерной защиты от опасных процессов, вызванных, прежде всего, нарушением стабильности склонов (оползней, обвалов, селевых потоков и др.) в период строительства олимпийских объектов горного кластера. Вопросы разработки, проектирования, монтажа эксплуатации данных систем. Внедрение инновационных технологий инженерной защиты, в частности, гибких барьеров на основе стальной сети и системы несущих канатов.

85. Шерер, В. А. Значение арктического шельфа и экологические проблемы освоения Российской Арктики/ В. А. Шерер, И. А. Скрибченко // **Газовая промышленность.** -- **2014.** -- № **716: Спецвып..** -- **С. 79-85.** -- Библиогр.: 14 назв.

Экологические аспекты освоения нефтегазовых месторождений в Арктике. Роль добычи углеводородов на российском арктическом шельфе. Ключевые экологические проблемы Арктического региона, основные риски и угрозы экологического характера при освоении ресурсов нефти и газа в Арктической зоне России. Примеры реализации российскими компаниями арктических проектов на шельфе Российской Федерации, а также способы обеспечения экологической безопасности при разработке нефтегазовых ресурсов в условиях высокой уязвимости экосистемы с соблюдением международных экологических стандартов.

86. Евдокимов, С. И. Извлечение металлов из лежалых хвостов с целью утилизации/ С. И. Евдокимов, В. С. Евдокимов // Физико-технические проблемы разработки полезных ископаемых. -- 2014. -- № 4. -- С. 172-182.

Изучение возможности утилизации песков хвостохранилища, образованного вследствие производственной деятельности флотационной свинцово-цинковой обогатительной фабрики. Утилизация сульфидов в товарные селективные концентраты. Изготовление из нерудной части хвостов качественной продукции: силикатного кирпича, стеклотары, стекловолокна, марблита.

87. Веселовский, А. А. Извлечение никеля из отвальных конвертерных шлаков комбината "Южуралникель" с использованием стружкоотходов/ А. А. Веселовский // Сталь. -- 2014. -- № 11. -- С. 94-96. -- Библиогр.: 3 назв.

Химико-термический способ извлечения никеля из отвальных конвертерных шлаков с использованием в качестве подложки стружкоотходов низкоуглеродистой конструкционной стали. Утилизация никельсодержащих конвертерных сталей.

88. Корниенко, **П. В.** Изготовление современных многокофункциональных бетонов на основе сталеплавильных шлаков/ П. В. Корниенко, Г. В. Гакштетер // **Технологии бетонов.** -- **2013.** -- **№ 3.** -- **С. 47-49.** -- Библиогр.: 11 назв.

Рациональное применение металлургических отходов сталеплавильного производства в качестве компонентов бетонной смеси.

89. Изменение геологической среды при разработке нефтяных месторождений в сложных горногеологических условиях/ В. В. Середин [и др.] // **Нефтяное хозяйство.** -- **2014.** -- № **12.** -- С. **153-155.** -- Библиогр.: 8 назв.

Выявление уровня загрязнения геологической среды в результате длительной эксплуатации одного из нефтяных месторождений Пермского края, расположенного в сложных горно-геологических условиях. Наличие углеводородного загрязнения почв, поверхностных и подземных вод.

90. Чевычелов, А. П. Изменение гидрохимических показателей поверхностных вод в промышленных районах Южной Якутии/ А. П. Чевычелов, Л. И. Кузнецова // Вода: химия и экология. -- 2014. -- № 6. -- С. 8-13. -- Библиогр.: 8 назв.

Изучение краткосрочных (5-летних) и долгосрочных (30 - 40-летних) изменений гидрохимических показателей поверхностных вод в районе интенсивного промышленного освоения.

91. Изучение микробного состава активных илов московских очистных сооружений/ А. Ю. Каллистова [и др.] // **Микробиология. -- 2014. -- Т. 83, № 5. -- С. 615-625.** -- Библиогр.: 33 назв.

Характеристика вклада в микробное сообщество активных илов основных технологически значимых групп микроорганизмов для аэротенков московских очистных сооружений. Применение для технологического контроля очистки сточных вод.

92. Кавайяс, Ф. Инвентаризация городских зеленых насаждений и их мониторинг с использованием данных WorldView-2/ Ф. Кавайяс, Ю. Рамос, А. Бойе // Геоматика. -- 2011. -- № 3. -- С. 67-73.

Целесообразность применения автоматизированной системы для работы с кадастрами зеленых насаждений в урбанизированных зонах.

93. Сваровская, Л. И. Индикаторы окисления углеводородов нефти микрофлорой глубинных вод Вахской залежи/ Л. И. Сваровская, Е. А. Ельчанинова // Вода: химия и экология. -- 2014. -- № 7. -- С. 75-80. -- Библиогр.: 9 назв.

Роль бактерий в процессах преобразования органического вещества нефти в глубинных условиях залежи в связи с развитием экологически безопасных микробиологических методов ликвидации поверхностных загрязнений нефтью и рекультивации нефтешламов, основанных на способности микроорганизмов к ферментативному окислению углеводородов.

94. Ермолаева, Н. В. Инженерная экология: индустриальные масла как источник экотоксикантов в техносфере/ Н. В. Ермолаева, Ю. В. Голубков // **Инженерная экология.** -- **2014.** -- № **6.** -- **C. 21-31**. -- Библиогр.: 31 назв.

Физические и физико-химические свойства наиболее вредных компонентов индустриальных масел и меры защиты окружающей среды от них.

95. Хоботова, Э. Б. Инженерная экология: определение сорбционных свойств металлургических шлаков/ Э. Б. Хоботова, И. В. Грайворонская // **Инженерная экология. -- 2014. -- № 6. -- С. 52-60.** -- Библиогр.: 14 назв. Технологические характеристики твердых промышленных отходов, как сорбентов, и направления их практического использования.

96. Любичанковская, Н. А. Эстетическая оценка ландшафтов урбанизированной территории в целях территориального планирования (на примере города Оренбурга)/ Н. А. Любичанковская // Вестник Оренбургского государственного университета. -- 2014. -- № 6. -- С. 123-127. -- Библиогр.: 8 назв. Анализ эстетического качества городского пространства г. Оренбурга. Картографическое обозначение и характеристика благоприятных и неблагоприятных зеленых зон, а также селитебных зон